ORIGINAL ARTICLE

Ulrike Schmidt · Nicola Meier · Sabine Lutz

Y-chromosomal STR haplotypes in a population sample from southwest Germany (Freiburg area)

Received: 15 April 2002 / Accepted: 13 March 2003 / Published online: 1 July 2003 © Springer-Verlag 2003

Abstract In the present study Y-chromosomal short tandem repeat (Y-STR) haplotypes of 433 unrelated male individuals from southwest Germany (Freiburg area) were analyzed. Population data for the loci DYS19, 389I, 389II, 390, 391, 392, 393, 385 and YCA II are given. Analysis of these loci provides the data that is defined as the "extended haplotype" and is available in the on-line Y-STR haplotpye reference database (YHRD) at http://ystr.org. Special emphasis is placed on the sequence and nomenclature of YCA II.

Keywords Y-STR · YCA II · Haplotype · Nomenclature

Introduction

In recent years Y-chromosomal short tandem repeats (Y-STRs) [1, 2, 3] have received increasing interest in forensic medicine. The specifically male patterns facilitate the assessment of mixed stains, e.g., in sexual assault cases [4, 5, 6, 7]. As an analogue to mitochondrial DNA, Y-chromosomal polymorphisms are also suitable for evaluating paternal lineages in kinship testing, especially in deficiency cases and for the development of models and theories in evolutionary genetics [8, 9, 10]. The number of Y-STRs that are suitable for forensic purposes is rising and their inclusion in forensic casework is a matter of discussion [11, 12], but the loci which form the so-called minimal and extended haplotypes can be referred to as the basis for forensic Y-STR haplotyping [13]. In this study we present population data for southwest Germany (Freiburg area) that were collected from 433 unrelated male individuals.

Within the context of forensic applications, the collection and databasing of as many Y-chromosomal haplotypes as possible is essential for reliable frequency estimates, especially for rare haplotypes. Another aim is the coverage of a maximum of different populations [13]. For appropriate databasing the application of standardized nomenclatures for the loci that are routinely used is crucial and should follow approved guidelines [14]. The nomenclature of the highly informative diallelic locus YCA II has not yet been standardized [2, 3, 15, 16, 17]. This is partly due to the different sequences that have been published for this locus [15, 16, 18], and partly due to considerations of whether or not to assign fragments to certain loci (YCAII a/b) as previously suggested [2, 10, 17].

Materials and methods

Whole blood samples or buccal swabs were collected from 433 unrelated male individuals. As a prerequisite, the individuals tested as well as their fathers had to have German surnames, and their place of birth had to be in the Freiburg area in southwest Germany. Genomic DNA was prepared according to standard procedures [19, 20]. For each sample a quadruplex (DYS19, 389I, 389II, 390) and a triplex (DYS391, 392, 393) reaction were performed on a thermocycler (PTC-200, MJ Research Inc.) as decribed elsewhere [3]. For DYS385 and YCA II single reactions were performed as previously described [16, 21]. PCR fragments were separated and detected on an ABI 373A DNA sequencer (Applied Biosystems, Weiterstadt, Germany).

Allele and haplotype frequencies for each allele/haplotype were obtained by simple counting and division methods. Estimates of gene diversity and haplotype diversity values were calculated according to Nei [22].

Results and discussion

Among the 433 unrelated male individuals, 340 different extended Y-chromosomal haplotypes were found (Table 1) and Table 2 shows the 15 most common Y-STR haplo-types found in the study sample. The majority of haplo-types (86.47%) were found only once and haplotype frequencies ranged between 0.23% and 3.93%. By analyzing

U. Schmidt $(\boxtimes) \cdot N$. Meier $\cdot S$. Lutz

Institute of Legal Medicine,

Albert Ludwig University of Freiburg,

Albertstrasse 9, 79104 Freiburg, Germany

Tel.: +49-761-2036830, Fax: +49-761-2036858,

e-mail: ulischmi@ukl.uni-freiburg.de

 Table 1
 Extended Y chromosomal STR haplotypes found among
unrelated male individuals from south west Germany (N=433). Allelic information is given in the format DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385, YCAII (HT haplotype number, n number of individuals observed for each given haplotype)

HT	Allelic information	n	54 55	14, 12, 28, 23, 10, 11, 13, 13–14, 19–21 14, 12, 28, 23, 10, 11, 13, 14–14, 19–21
1	13, 12, 28, 22, 10, 16, 11, 12–17, 18–22	1	56	14, 12, 28, 23, 10, 11, 13, 14-15, 19-21 14, 12, 28, 23, 10, 11, 13, 14-15, 19-21
2	13, 12, 28, 23, 11, 13, 13, 11–14, 19–23	1	57	14, 12, 28, 23, 10, 11, 15, 13–14, 19–21
3	13, 12, 29, 22, 11, 11, 12, 13–16, 19–22	1	58	14, 12, 28, 23, 10, 13, 12, 11–15, 19–23
4	13, 12, 29, 25, 9, 11, 12, 12–18, 19–22	1	59	14, 12, 28, 24, 10, 13, 13, 11–15, 19–20
5	13, 13, 28, 22, 10, 15, 13, 15–16, 19–19	1	60	14, 12, 28, 24, 11, 13, 13, 11–11, 18–23
6	13, 13, 28, 25, 10, 13, 14, 11–14, 19–23	1	61	14 12 28 24 11 13 13 11-14 19-23
7	13, 13, 29, 24, 10, 13, 13, 11–14, 19–23	1	62	14, 12, 28, 24, 11, 13, 13, 11–15, 19–23
8	13, 13, 29, 24, 11, 13, 13, 11–11, 19–23	1	63	14, 12, 28, 24, 11, 13, 13, 12–14, 19–23
9	13, 13, 29, 24, 11, 13, 13, 11–14, 19–23	1	64	14, 12, 29, 22, 10, 11, 13, 13–14, 19–21
10	13, 13, 30, 22, 10, 11, 13, 17–18, 19–21	1	65	14, 12, 29, 22, 11, 12, 13, 13–13, 19–21
11	13, 13, 30, 23, 10, 11, 12, 17–17, 19–21	1	66	14, 12, 29, 23, 11, 12, 13, 12–14, 19–23
12	13, 13, 30, 24, 10, 11, 13, 14–18, 19–21	1	67	14, 12, 29, 25, 11, 13, 13, 11–15, 19–23
13	13, 13, 30, 24, 10, 11, 13, 16–17, 19–21	1	68	14, 12, 30, 22, 10, 11, 14, 14–16, 18–20
14	13, 13, 30, 24, 10, 11, 13, 16–18, 19–21	2	69	14, 12, 30, 23, 10, 11, 13, 14–14, 19–21
15	13, 13, 30, 24, 10, 11, 13, 16–19, 19–21	2	70	14, 13, 28, 22, 11, 13, 13, 11–14, 19–23
16	13, 13, 30, 24, 10, 11, 13, 17–18, 19–21	1	71	14, 13, 28, 23, 10, 13, 11, 11–15, 19–23
17	13, 13, 30, 24, 10, 13, 13, 11–14, 19–22	1	72	14, 13, 28, 23, 10, 13, 13, 11–15, 19–23
18	13, 13, 30, 24, 11, 13, 13, 11–11, 19–23	1	73	14, 13, 28, 23, 11, 13, 14, 11–15, 19–23
19	13, 13, 30, 25, 10, 11, 14, 16–18, 19–21	1	74	14, 13, 28, 24, 10, 13, 13, 11–14, 19–23
20	13, 13, 30, 25, 12, 11, 14, 16–17, 19–21	1	75	14, 13, 28, 24, 10, 13, 13, 12–13, 19–23
21	13, 13, 31, 22, 10, 11, 12, 12–16, 19–21	1	76	14, 13, 28, 24, 11, 13, 12, 11–14, 19–23
22	13, 13, 31, 24, 10, 11, 12, 17–18, 19–21	1	77	14, 13, 28, 24, 11, 13, 13, 11–14, 19–23
23	13, 13, 31, 24, 10, 11, 13, 16–20, 19–21	1	78	14, 13, 28, 24, 11, 13, 13, 12–13, 19–23
24	13, 13, 31, 24, 10, 13, 13, 11–14, 19–23	1	79	14, 13, 28, 24, 11, 13, 15, 11–14, 19–23
25	13, 13, 31, 24, 11, 11, 13, 16–19, 21–21	1	80	14, 13, 28, 25, 11, 12, 13, 11–14, 19–19
26	13, 13, 31, 24, 9, 11, 13, 13–14, 19–22	1	81	14, 13, 29, 22, 10, 11, 13, 13–14, 19–21
27	13, 14, 30, 24, 10, 11, 13, 14–14, 19–22	1	82	14, 13, 29, 22, 10, 11, 13, 13–15, 19–21
28	13, 14, 30, 24, 9, 11, 13, 13–14, 19–22	1	83	14, 13, 29, 22, 10, 11, 13, 14–15, 19–21
29	13, 14, 31, 24, 10, 10, 13, 16–18, 19–21	1	84	14, 13, 29, 22, 10, 11, 15, 12–13, 17–17
30	13, 14, 31, 24, 10, 11, 13, 16–18, 19–21	2	85	14, 13, 29, 23, 10, 11, 12, 13–16, 19–22
31	13, 14, 32, 25, 12, 11, 13, 16–17, 19–21	1	86	14, 13, 29, 23, 10, 11, 12, 13–16, 21–22
32	14, 12, 27, 22, 10, 11, 13, 13–14, 19–21	1	87	14, 13, 29, 23, 10, 11, 12, 14–15, 19–23
33	14, 12, 27, 24, 11, 13, 13, 11–14, 19–23	2	88	14, 13, 29, 23, 10, 11, 13, 13–14, 19–21
34	14, 12, 27, 24, 11, 13, 14, 11–14, 19–23	1	89	14, 13, 29, 23, 10, 13, 12, 11–14, 19–23
35	14, 12, 27, 24, 11, 13, 14, 12–14, 19–23	1	90	14, 13, 29, 23, 10, 13, 13, 11–14, 19–22
36	14, 12, 28, 22, 10, 11, 13, 12–13, 19–21	1	91	14, 13, 29, 23, 10, 13, 13, 11–14, 19–23
37	14, 12, 28, 22, 10, 11, 13, 12–15, 19–21	1	92	14, 13, 29, 23, 10, 13, 13, 11–16, 19–23
38	14, 12, 28, 22, 10, 11, 13, 13–13, 19–21	2	93	14, 13, 29, 23, 10, 13, 13, 12–14, 19–23
39	14, 12, 28, 22, 10, 11, 13, 13–14, 19–21	3	94	14, 13, 29, 23, 10, 14, 13, 11–14, 19–19
40	14, 12, 28, 22, 10, 11, 13, 13–15, 19–21	1	95	14, 13, 29, 23, 10, 14, 13, 11–14, 19–23
41	14, 12, 28, 22, 10, 11, 13, 13–17, 18–21	1	96	14, 13, 29, 23, 11, 13, 12, 11–13, 19–22
42	14, 12, 28, 22, 10, 11, 13, 14–14, 19–21	1	97	14, 13, 29, 23, 11, 13, 13, 10–14, 19–19
43	14, 12, 28, 22, 10, 11, 13, 14–15, 19–21	1	98	14, 13, 29, 23, 11, 13, 13, 11–11, 19–22
44	14, 12, 28, 22, 10, 11, 14, 13–14, 19–21	3	99	14, 13, 29, 23, 11, 13, 13, 11–12, 19–23
45	14, 12, 28, 22, 10, 12, 13, 12–13, 19–21	1	100	14, 13, 29, 23, 11, 13, 13, 11–13, 19–23
46	14, 12, 28, 22, 11, 10, 13, 12–15, 19–21	1	101	14, 13, 29, 23, 11, 13, 13, 11–14, 19–21
47	14, 12, 28, 22, 11, 11, 12, 13–14, 19–21	1	102	14, 13, 29, 23, 11, 13, 13, 11–14, 19–22
48	14, 12, 28, 22, 11, 11, 13, 13–14, 19–21	1	103	14, 13, 29, 23, 11, 13, 13, 11–14, 19–23
49	14, 12, 28, 22, 11, 11, 13, 13–15, 19–21	1	104	14, 13, 29, 23, 11, 13, 13, 11–15, 19–23
50	14, 12, 28, 22, 11, 11, 13, 14–14, 19–21	1	105	14, 13, 29, 23, 11, 13, 13, 14–15, 23–23
51	14, 12, 28, 22, 13, 11, 13, 13–14, 19–21	1	106	14, 13, 29, 23, 11, 13, 14, 11–13, 18–23

Table 1 (continued)

Allelic information

14, 12, 28, 23, 10, 11, 13, 13–13, 19–21

14, 12, 28, 23, 10, 11, 13, 13-14, 18-21

n

HT

Table 1 (continued)

Table 1 (continued)

HT	Allelic information	n	HT	Allelic information	n		
107	14, 13, 29, 23, 11, 13, 14, 11–14, 19–23	1	162	14, 13, 30, 25, 12, 13, 13, 11–14, 19–23	1		
108	14, 13, 29, 23, 11, 13, 14, 11–15, 19–23	1	163	14, 13, 31, 23, 10, 11, 14, 17–17, 19–22	1		
109	14, 13, 29, 23, 11, 14, 13, 11–14, 19–23	1	164	14, 13, 31, 24, 11, 11, 13, 16–18, 19–21	1		
110	14, 13, 29, 23, 12, 13, 13, 11–14, 19–21	1	165	14, 13, 31, 24, 11, 13, 14, 12–14, 19–23	1		
111	14, 13, 29, 24, 10, 13, 12, 11–14, 19–23	1	166	14, 14, 29, 23, 12, 13, 13, 11–14, 19–23	1		
112	14, 13, 29, 24, 10, 13, 13, 11–14, 19–23	9	167	14, 14, 30, 22, 10, 11, 13, 13–14, 17–21	1		
113	14, 13, 29, 24, 10, 13, 13, 11–15, 19–23	2	168	14, 14, 30, 23, 10, 11, 12, 12–18, 18–22	1		
114	14, 13, 29, 24, 10, 13, 13, 11–16, 19–22	1	169	14, 14, 30, 23, 10, 12, 13, 11–15, 19–21	1		
115	14, 13, 29, 24, 10, 13, 13, 12–14, 19–23	1	170	14, 14, 30, 23, 10, 12, 13, 12–13, 19–21	1		
116	14, 13, 29, 24, 10, 13, 13, 12–15, 19–23	1	171	14, 14, 30, 23, 11, 13, 13, 11–14, 19–22	1		
117	14, 13, 29, 24, 10, 13, 14, 11–14, 19–23	1	172	14, 14, 30, 23, 11, 13, 13, 11–14, 19–23	3		
118	14, 13, 29, 24, 10, 13, 14, 11–15, 19–23	1	173	14, 14, 30, 23, 11, 14, 13, 11–14, 19–23	1		
119	14, 13, 29, 24, 10, 14, 13, 10–15, 19–23	1	174	14, 14, 30, 23, 11, 14, 14, 11–13, 18–20	1		
120	14, 13, 29, 24, 10, 14, 13, 11–14, 19–24	1	175	14, 14, 30, 23, 12, 13, 13, 11–13, 21–23	1		
121	14, 13, 29, 24, 10, 14, 13, 11–15, 19–23	1	176	14, 14, 30, 24, 10, 11, 12, 13–15, 19–22	1		
122	14, 13, 29, 24, 11, 12, 14, 11–16, 19–22	2	177	14, 14, 30, 24, 10, 13, 13, 11–14, 19–22	1		
123	14, 13, 29, 24, 11, 13, 12, 11–12, 19–23	2	178	14, 14, 30, 24, 10, 13, 13, 11–14, 19–24	1		
124	14, 13, 29, 24, 11, 13, 12, 11–14, 19–23	2	179	14, 14, 30, 24, 11, 13, 13, 11–11, 19–23	1		
125	14, 13, 29, 24, 11, 13, 13, 11–11, 19–23	2	180	14, 14, 30, 24, 11, 13, 13, 11–14, 19–23	1		
126	14, 13, 29, 24, 11, 13, 13, 11–14, 18–23	1	181	14, 14, 30, 24, 11, 13, 13, 12–14, 19–23	2		
127	14, 13, 29, 24, 11, 13, 13, 11–14, 19–22	1	182	14, 14, 30, 24, 11, 13, 14, 10–14, 19–23	1		
128	14, 13, 29, 24, 11, 13, 13, 11–14, 19–23	17	183	14, 14, 30, 24, 11, 13, 14, 11–14, 19–23	1		
129	14, 13, 29, 24, 11, 13, 13, 11–14, 19–24	1	184	14, 14, 30, 24, 11, 14, 13, 11–14, 19–23	1		
130	14, 13, 29, 24, 11, 13, 13, 11–15, 19–23	6	185	14, 14, 30, 24, 12, 13, 13, 11–14, 18–23	1		
131	14, 13, 29, 24, 11, 13, 13, 11–16, 19–23	3	186	14, 14, 31, 23, 10, 11, 12, 13–17, 19–25	1		
132	14, 13, 29, 24, 11, 13, 13, 12–15, 19–23	1	187	14, 14, 31, 23, 10, 13, 13, 11–13, 19–23	1		
133	14, 13, 29, 24, 11, 13, 13, 14–14, 19–23	1	188	14, 14, 31, 23, 11, 13, 13, 12–14, 19–23	1		
134	14, 13, 29, 24, 11, 13, 14, 11–14, 19–22	1	189	14, 14, 31, 24, 11, 13, 13, 11–14, 19–23	1		
135	14, 13, 29, 24, 11, 13, 14, 11–14, 19–23	1	190	14, 14, 31, 24, 11, 13, 13, 12–14, 19–23	1		
136	14, 13, 29, 24, 11, 15, 13, 12–15, 19–23	1	191	14, 14, 31, 25, 10, 11, 12, 13–15, 19–22	1		
137	14, 13, 29, 24, 12, 13, 13, 11–14, 19–23	1	192	14, 14, 32, 23, 10, 12, 14, 15–16, 19–21	1		
138	14, 13, 29, 24, 12, 13, 13, 11–16, 19–23	1	193	14, 14, 32, 23, 11, 11, 12, 13–19, 19–22	1		
139	14, 13, 29, 24, 12, 13, 13, 13–14, 19–23	1	194	14, 15, 31, 24, 11, 13, 14, 10–14, 19–23	1		
140	14, 13, 29, 24, 9, 11, 12, 12–16, 19–23	1	195	(14, 15), 13, 29, 24, 11, 13, 13, 11–14, 19–23	1		
141	14, 13, 29, 24, 9, 13, 13, 11–15, 19–23	1	196	15, 12, 27, 24, 10, 11, 13, 14–17, 20–20	1		
142	14, 13, 29, 25, 10, 11, 12, 12–12, 22–23	1	197	15, 12, 28, 22, 10, 11, 13, 12–14, 19–20	1		
143	14, 13, 29, 25, 10, 13, 13, 11–13, 19–23	1	198	15, 12, 28, 22, 10, 11, 13, 13–14, 19–21	2		
144	14, 13, 29, 25, 10, 14, 13, 11–14, 19–23	1	199	15, 12, 28, 22, 10, 11, 13, 14–14, 19–21	2		
145	14, 13, 29, 25, 11, 13, 13, 11–14, 19–23	3	200	15, 12, 28, 22, 10, 11, 13, 14–14, 20–20	1		
146	14, 13, 29, 25, 11, 13, 13, 11–15, 19–24	1	201	15, 12, 28, 22, 9, 11, 14, 14–14, 20–20	1		
147	14, 13, 29, 25, 12, 13, 13, 11–15, 19–23	1	202	15, 12, 28, 23, 10, 11, 13, 13–14, 19–21	1		
148	14, 13, 29, 27, 11, 14, 13, 11–14, 19–23	1	203	15, 12, 28, 23, 10, 11, 13, 13–15, 19–21	1		
149	14, 13, 30, 22, 10, 11, 14, 11–13, 17–17	1	204	15, 12, 28, 23, 10, 11, 13, 14–14, 19–23	1		
150	14, 13, 30, 22, 11, 13, 13, 11–13, 19–23	1	205	15, 12, 28, 23, 10, 11, 14, 14–14, 19–21	1		
151	14, 13, 30, 23, 10, 11, 12, 11–16, 22–22	1	206	15, 12, 28, 23, 10, 14, 13, 13–14, 19–23	1		
152	14, 13, 30, 23, 10, 11, 12, 13–18, 21–22	1	207	15, 12, 28, 24, 10, 11, 12, 13–14, 19–20	1		
153	14, 13, 30, 23, 10, 11, 12, 13–18, 22–22	1	208	15, 12, 28, 24, 10, 11, 12, 13–17, 19–20	1		
154	14, 13, 30, 23, 11, 11, 12, 13–15, 22–22	1	209	15, 12, 28, 24, 10, 11, 12, 13–17, 20–20	2		
155	14, 13, 30, 23, 11, 13, 13, 11–14, 19–21	2	210	15, 12, 28, 24, 10, 11, 12, 14–17, 19–20	1		
156	14, 13, 30, 23, 11, 13, 13, 11–14, 19–23	3	211	15, 12, 28, 24, 10, 11, 12, 15–17, 19–20	1		
157	14, 13, 30, 24, 11, 11, 13, 11–14, 19–23	1	212	15, 12, 28, 24, 11, 13, 13, 11–13, 19–23	1		
158	14, 13, 30, 24, 11, 13, 13, 11–14, 19–23	2	213	15, 12, 28, 24, 11, 13, 13, 11–14, 19–23	3		
159	14, 13, 30, 24, 11, 13, 14, 11–13, 19–23	1	214	15, 12, 28, 24, 11, 13, 13, 11–15, 20–23	1		
160	14, 13, 30, 25, 10, 13, 13, 11–11, 19–22	1	215	15, 12, 28, 25, 10, 11, 12, 14–18, 19–20	1		
161	14, 13, 30, 25, 11, 13, 11, 10–14, 18–23	1	216	15, 12, 28, 25, 11, 11, 13, 11–14, 19–19	1		

Table 1 (continued)

Table 1 (continued)

HT	Allelic information	n	HT	Allelic information	n
217	15, 12, 29, 22, 10, 11, 13, 12–14, 19–20	1	272	15, 14, 30, 22, 10, 11, 12, 15–16, 19–21	1
218	15, 12, 29, 22, 10, 11, 13, 13–14, 19–21	1	273	15, 14, 30, 22, 10, 11, 12, 15–17, 19–21	1
219	15, 12, 29, 22, 10, 11, 13, 14–14, 20–20	1	274	15, 14, 30, 22, 10, 11, 12, 15–18, 19–21	1
220	15, 12, 29, 22, 10, 11, 14, 12–14, 19–20	1	275	15, 14, 30, 23, 10, 12, 15, 15–15, 19–21	1
221	15, 12, 29, 22, 10, 11, 14, 13–14, 20–20	1	276	15, 14, 30, 23, 11, 13, 13, 15–16, 23–23	1
222	15, 12, 29, 22, 10, 11, 14, 14–14, 19–19	1	277	15, 14, 30, 24, 10, 13, 13, 11–14, 19–23	1
223	15, 12, 29, 22, 10, 11, 14, 14–14, 20–20	2	278	15, 14, 30, 24, 11, 14, 14, 11–13, 18–20	1
224	15, 12, 29, 22, 10, 11, 14, 14–15, 20–20	1	279	15, 14, 30, 24, 9, 11, 13, 12–12, 11–21	1
225	15, 12, 29, 22, 10, 11, 15, 13–14, 20–20	1	280	15, 14, 30, 24, 9, 11, 13, 13–14, 19–21	1
226	15, 12, 29, 23, 10, 7, 13, 13–15, 19–21	1	281	15, 14, 31, 23, 10, 12, 17, 11–14, 19–21	1
227	15, 12, 29, 24, 10, 11, 12, 10–17, 19–20	1	282	15, 14, 31, 23, 10, 13, 13, 14–16, 23–24	1
228	15, 12, 29, 24, 10, 11, 12, 15–18, 19–20	1	283	15, 14, 31, 23, 11, 13, 13, 11–14, 19–23	1
229	15, 12, 29, 24, 11, 13, 13, 11–13, 19–23	1	284	15, 14, 31, 25, 11, 11, 13, 11–15, 23–23	1
230	15, 12, 29, 25, 10, 11, 13, 11–14, 19–23	1	285	15, 14, 31, 25, 12, 11, 13, 11–13, 23–23	1
231	15, 12, 30, 21, 11, 11, 14, 12–14, 19–20	1	286	15, 14, 32, 22, 10, 12, 14, 14–15, 19–21	1
232	15, 12, 30, 22, 10, 11, 13, 12–13, 19–20	1	287	15, 14, 32, 23, 10, 12, 14, 15–15, 19–21	1
233	15, 12, 30, 22, 10, 11, 14, 14–14, 20–20	1	288	15, 14, 33, 23, 10, 12, 15, 15–15, 19–21	1
234	15, 12, 30, 24, 10, 11, 13, 19–19, 19–22	1	289	16, 12, 28, 23, 10, 11, 13, 14–14, 19–21	1
235	15, 12, 30, 25, 11, 11, 13, 11–14, 19–23	1	290	16, 12, 28, 24, 10, 11, 12, 14–16, 19–20	1
236	15, 13, 28, 21, 11, 13, 13, 11–14, 19–23	1	291	16, 12, 28, 24, 10, 11, 13, 13–16, 19–19	1
237	15, 13, 28, 23, 11, 13, 13, 11–14, 21–23	1	292	16, 12, 28, 25, 11, 12, 13, 13–18, 19–19	1
238	15, 13, 28, 24, 11, 13, 13, 11–11, 19–23	1	293	16, 12, 29, 21, 11, 11, 15, 13–16, 19–20	1
239	15, 13, 28, 24, 11, 14, 13, 11–14, 19–23	1	294	16, 12, 29, 22, 10, 11, 14, 12–14, 20–20	1
240	15, 13, 28, 25, 10, 11, 14, 11–14, 19–23	1	295	16, 12, 29, 24, 10, 11, 12, 14–17, 19–20	1
241	15, 13, 29, 22, 10, 11, 13, 14–14, 19–21	1	296	16, 12, 29, 24, 10, 11, 13, 13–17, 19–19	1
242	15, 13, 29, 22, 10, 11, 14, 14–15, 20–20	1	297	16, 12, 30, 26, 10, 13, 13, 11–14, 19–23	1
243	15, 13, 29, 22, 10, 13, 14, 16–17, 19–21	1	298	16, 13, 28, 22, 11, 11, 13, 12–12, 11–21	1
244	15, 13, 29, 23, 10, 11, 12, 13–18, 19–22	1	299	16, 13, 28, 23, 10, 11, 13, 12–12, 11–21	1
245	15, 13, 29, 23, 10, 11, 13, 14–14, 19–21	1	300	16, 13, 28, 23, 10, 11, 13, 12–13, 11–21	1
246	15, 13, 29, 23, 10, 12, 15, 16–16, 19–21	1	301	16, 13, 29, 25, 10, 11, 13, 11–14, 19–23	1
247	15, 13, 29, 23, 10, 13, 13, 11–15, 19–23	1	302	16, 13, 29, 26, 10, 11, 13, 11–14, 19–23	1
248	15, 13, 29, 23, 11, 12, 14, 15–16, 19–19	1	303	16, 13, 30, 24, 10, 11, 13, 10–14, 19–23	1
249	15, 13, 29, 23, 11, 13, 13, 11–14, 19–23	2	304	16, 13, 30, 24, 11, 11, 13, 11–14, 19–22	1
250	15, 13, 29, 23, 11, 13, 13, 11–15, 19–23	1	305	16, 13, 30, 24, 11, 11, 13, 11–14, 19–23	2
251	15, 13, 29, 23, 11, 13, 14, 11–14, 19–23	2	306	16, 13, 30, 25, 10, 11, 13, 10–13, 19–23	1
252	15, 13, 29, 23, 9, 11, 12, 13–16, 20–22	1	307	16, 13, 30, 25, 10, 11, 13, 11–14, 19–23	1
253	15, 13, 29, 24, 10, 12, 15, 16–16, 19–19	1	308	16, 13, 30, 25, 10, 11, 14, 11–14, 19–23	1
254	15, 13, 29, 24, 10, 13, 13, 11–15, 19–23	1	309	16, 13, 30, 25, 11, 11, 13, 11–13, 19–23	1
255	15, 13, 29, 24, 11, 13, 13, 10–14, 19–24	1	310	16, 13, 30, 25, 11, 11, 13, 11–14, 19–23	2
256	15, 13, 29, 24, 11, 13, 13, 11–14, 19–23	3	311	16, 13, 30, 25, 11, 11, 13, 11–15, 19–23	1
257	15, 13, 29, 24, 9, 11, 12, 13–16, 19–22	1	312	16, 13, 31, 24, 10, 11, 13, 14–15, 21–21	1
258	15, 13, 29, 24, 9, 11, 12, 13–17, 19–22	1	313	16, 13, 31, 24, 11, 11, 13, 14–15, 21–21	2
259	15, 13, 29, 26, 10, 11, 14, 11–14, 19–23	1	314	16, 13, 31, 24, 11, 11, 13, 15–15, 21–21	1
260	15, 13, 30, 22, 10, 11, 13, 14–14, 19–21	1	315	16, 13, 31, 25, 10, 11, 13, 10–14, 19–23	1
261	15, 13, 30, 22, 10, 11, 14, 13–14, 19–20	1	316	16, 13, 31, 25, 10, 11, 13, 11–14, 19–23	1
262	15, 13, 30, 23, 10, 11, 12, 12–16, 19–22	1	317	16, 13, 31, 25, 11, 11, 13, 10–16, 19–23	1
263	15, 13, 30, 23, 11, 13, 13, 11–15, 19–23	1	318	16, 14, 30, 25, 10, 11, 13, 11–15, 19–23	1
264	15, 13, 30, 23, 11, 14, 14, 11–13, 18–20	1	319	16, 14, 31, 25, 10, 11, 13, 11–14, 19–23	1
265	15, 13, 30, 25, 10, 11, 13, 11–14, 19–23	2	320	16, 14, 33, 24, 10, 11, 13, 15–15, 21–21	1
266	15, 13, 30, 25, 10, 11, 13, 15–15, 19–23	1	321	16, 15, 32, 24, 10, 11, 13, 11–14, 19–23	1
267	15, 13, 30, 25, 11, 11, 13, 11–14, 19–21	1	322	17, 12, 28, 22, 11, 11, 14, 14–15, 20–20	1
268	15, 13, 31, 23, 10, 12, 14, 15–15, 19–21	2	323	17, 12, 28, 25, 10, 11, 12, 13–17, 19–20	1
269	15, 13, 31, 26, 10, 11, 13, 11–14, 19–23	1	324	17, 12, 28, 25, 11, 11, 14, 13–17, 19–19	1
270	15, 13, 32, 25, 11, 11, 13, 11–15, 19–23	1	325	17, 12, 28, 25, 11, 12, 13, 13–17, 19–19	1
271	15, 14, 29, 24, 10, 14, 13, 11–14, 19–23	1	326	17, 12, 29, 25, 10, 11, 13, 14–16, 19–19	1

Table 1 (continued)

HT	Allelic information	n
327	17, 13, 28, 23, 10, 11, 13, 11–12, 11–21	1
328	17, 13, 29, 25, 10, 11, 13, 10–14, 19–23	1
329	17, 13, 29, 25, 10, 11, 13, 11–11, 19–21	1
330	17, 13, 29, 25, 10, 11, 13, 11–14, 19–23	1
331	17, 13, 30, 21, 10, 11, 14, 18–19, 19–21	1
332	17, 13, 30, 25, 10, 11, 12, 14–14, 19–23	1
333	17, 13, 30, 25, 10, 11, 13, 10–14, 19–23	2
334	17, 13, 30, 25, 11, 11, 13, 11–14, 19–23	1
335	17, 13, 30, 26, 11, 11, 13, 11–14, 19–23	1
336	17, 13, 31, 25, 10, 11, 13, 10–14, 19–23	1
337	17, 14, 29, 25, 10, 11, 13, 10–14, 19–23	1
338	17, 14, 31, 24, 9, 13, 13, 13–14, 18–23	1
339	17, 14, 32, 23, 10, 12, 15, 15–16, 17–21	1
340	17, 14, 32, 24, 10, 11, 13, 14–15, 21–21	1

Table 2 The 15 most common Y chromosomal STR haplotypes found among unrelated male individuals from southwest Germany (N=433). Allelic information is given in the format DYS19, DYS389I, DYS389I, DYS389I, DYS390, DYS391, DYS392, DYS393, DYS385, YCAII (*n* number of individuals observed for each given haplotype, *HT* haplotype number)

Nr.	Allelic information	HT	n
1	14, 13, 29, 24, 11, 13, 13, 11–14, 19–23	128	17
2	14, 13, 29, 23, 11, 13, 13, 11–14, 19–23	103	10
3	14, 13, 29, 24, 10, 13, 13, 11–14, 19–23	112	9
4	14, 13, 29, 24, 11, 13, 13, 11–15, 19–23	130	6
5	14, 12, 28, 23, 10, 11, 13, 13–14, 19–21	54	4
6	14, 13, 29, 23, 10, 13, 13, 11–14, 19–23	91	4
7	14, 12, 28, 22, 10, 11, 13, 13–14, 19–21	39	3
8	14, 12, 28, 22, 10, 11, 14, 13–14, 19–21	44	3
9	14, 13, 29, 23, 11, 13, 13, 11–13, 19–23	100	3
10	14, 13, 29, 24, 11, 13, 13, 11–16, 19–23	131	3
11	14, 13, 29, 25, 11, 13, 13, 11–14, 19–23	145	3
12	14, 13, 30, 23, 11, 13, 13, 11–14, 19–23	156	3
13	14, 14, 30, 23, 11, 13, 13, 11–14, 19–23	172	3
14	15, 12, 28, 24, 11, 13, 13, 11–14, 19–23	213	3
15	15, 13, 29, 24, 11, 13, 13, 11–14, 19–23	256	3

the extended haplotype including YCA II, 294 out of 433 Y-chromosomes (67.9%) could be distinguished compared to 274 out of 433 Y-chromosomes (63.3 %) by minimal haplotyping (9 loci without YCAII). Accordingly, typing of YCAII led to the sub-division of 14 minimal haplotypes into 31 different extended haplotypes. The estimate for haplotype diversity was 0.9956 for the extended haplotypes versus 0.9947 for the minimal haplotypes. Allele ranges and gene diversity values for the examined loci are given in Table 3. For DYS385 and YCAII the number of observed allelic classes is given. One duplication (14, 15) was found in DYS19.

Part of the data presented in this study has already been submitted to the YHRD (Y-STR haplotype reference database) and the data were analyzed in comparison to other, mostly European, populations. The different frequencies of

Table 3 Observed allele ranges for the analyzed loci (N=433). For the diallelic loci DYS385 and YCAII the number of allelic classes is provided. Gene diversity was estimated according to Nei [22]

Y-STR	Allele range (number of allelic classes)	Gene diversity [22]		
DYS19	13–17	0.626		
DYS389I	12–15	0.549		
DYS389II	27–33	0.710		
DYS390	21–27	0.719		
DYS391	9–13	0.553		
DYS392	7–16	0.596		
DYS393	11–17	0.454		
DYS385	(43)	0.861		
YCAII	(24)	0.705		

the haplotypes given in Table 2 within the population examined in this study and the European YHRD (by 12.2002) are illustrated in Fig. 1. However, statistical analysis failed to prove any significant differences. Due to a very homogeneous European Y-STR pool, interpopulation variability is very low [13] and so far, significant differences have only been shown for Polish paternal lineages [23].

For the diallelic locus YCAII several sequences have been published [15, 16] or submitted to the GenBank (AY059068 [16], AF140640 [18]). A numeric nomenclature with allele 1 as $(CA)_{19}$ was given by Quintana-Murci et al. [17]. In this nomenclature as in other studies [2, 10] the larger fragment of the electrophoretic pattern is assigned to locus YCAIIa, the smaller fragment to locus YCAIIb. However, the position and structure of the two YCAII loci have not yet been sufficiently clarified.

The numeric nomenclature for YCA II established by Kayser et al. [3] utilized the shortest allele observed in their study as the point of reference, a $(CA)_{17}$ allele with 146 bp (sequenced). However, several research groups have identified shorter alleles [16, 17], which can clearly not be included in this nomenclature in a meaningful manner. This emphasized the need for standardized repeat-based nomenclatures for STR loci used in the forensic context [14].

The repeat-based nomenclature used in this study is based on the revised sequence of YCAII as previously reported [16]. The differences between the published sequences are shown in Fig. 2: the sequence published by Matsumoto et al. [15] lacks a thymine at position 2 (first base of priming site according to Mathias et al. [2]). A second base is lacking within the adenosine-stretch at position 21–26 which might be due to inadequate base calling by the sequencing software. Bergen et al. [18] submitted the sequence of a YCA II clone to the GenBank. There is an additional cytidine at the end of the submitted sequence (G at position 1 of the complementary strand shown in Fig. 2), which is not included in the cited primer or primer-binding site [2]. This surplus base might be part of the vector that was used for cloning.

Based on the revised sequence of YCAII a repeat-based nomenclature for this locus could be proposed and has recently been adopted by the YHRD. In this way, another

Fig. 2 Sequences of YCAII as previously published, citations are mentioned in square brackets. If available, GenBank accession numbers are given. Differences between the sequences are indicated by dahses (-). The revised sequence as published by the authors [16] is 150 bp long (allele 19, previously 3)

	*	20	*	40	*		
[15]	ATCGATGTAAT	GTTATATTAAA	A-ATGCACAC	CACACACACA	CACACACA	:	48
AY059068[16]:	-TATCGATGTAAT	GTTATATTAAA	AAATGCACAC	CACACACACA	CACACACA	:	50
AF140640[18]:	GTATCGATGTAAT	GTTATATTAAA	AAATGCACAC	CACACACACA	CACACACA	:	51
	60	*	80	*	100		
[15]	CACACACACACAC	ACAGCTAACCT	TATGGTGAAA	GACTGACAG	ATTTTACT	:	99
AY059068[16]:	CACACACACACAC	ACAGCTAACCT	TATGGTGAAA	GACTGACAG	ATTTTACT	:	101
AF140640[18]:	CACACACACACAC	ACAGCTAACCT	TATGGTGAAA	GACTGACAG	ATTTTACT	:	102
	*	120	*	140	*		
[15]	CTAAGAGCAAAAA	CAAGGATGCCT	GTTTTCACTA	CTTCTATTT	AATATA	:	148
AY059068[16]:	CTAAGAGCAAAAA	CAAGGATGCCT	GTTTTCACTA	CTTCTATTT	AATATA	:	150
AF140640[18]:	CTAAGAGCAAAAA	CAAGGATGCCT	GTTTTCACTA	CTTCTATTT	AATATA	:	151

step towards a standardized and extensive databasing of Y-STR haplotypes for forensic, genealogical, and evolutionary purposes has been accomplished.

Acknowledgements We would like to thank L. Roewer for advice and for provision of reference DNA samples. This work was financed in part by a grant from Wissenschaftliche Gesellschaft in Freiburg.

References

- Roewer L, Arnemann J, Spurr NK, Grzeschik K-H, Epplen JT (1992) Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 89:389–394
- Mathias N, Bayes M, Tyler-Smith C (1994) Highly informative compound haplotypes for the human Y-chromosome. Hum Mol Genet 3:115–123

- 3. Kayser M, Caglià A, Corach D et al. (1997) Evaluation of Y-chromosomal STRs: a multicenter study. Int J Legal Med 110:125–133
- 4. Honda K, Roewer L, Knijff P de (1999) Male DNA typing from 25-year-old vaginal swabs using Y chromosomal STR polymorphisms in a retrial request case. J Forensic Sci 44:868– 872
- 5. Dekairelle AF, Hoste B (2001) Application of a Y-STR-pentaplex PCR (DYS19, DYS398I and II, DYS390 and DYS393) to sexual assault cases. Forensic Sci Int 118:122–123
- 6. Sibille I, Duverneuil C, Lorin de la Grandmaison G et al. (2002) Y-STR DNA amplification as biological evidence in sexually assaulted female victims with no cytological detection of spermatozoa. Forensic Sci Int 125:212–216
- Schmidt U, Meier N, Weisser HJ, Knoblich A, Graw M (2003) Application of Y chromosomal short tandem repeats (Y-STRs) to the examination of abortion tissue. Arch Kriminol 211:42– 47
- Jobling MA, Pandya A, Tyler-Smith C (1997) The Y chromosome in forensic analysis and paternity testing. Int J Legal Med 110:118–124

- Knijff P de, Kayser M, Caglià A et al. (1997) Chromosome Y microsatellites: population genetic and evolutionary aspects. Int J Legal Med 110:134–140
- Malaspina P, Cruciani F, Santolamazza P et al. (2000) Patterns of male-specific inter-population divergence in Europe, West Asia and North Africa. Ann Hum Genet 64:395–412
- Beleza S, Alves C, González-Neira A, Lareu M, Amorim A, Carracedo A, Gusmao L (2003) Extending STR markers in Y chromosome haplotypes. Int J Legal Med 117:27–33
- 12. Uchihi R, Yamamoto T, Usuda K et al. (2003) Haplotype analysis with 14 Y-STR loci using two multiplex amplification and typing systems in two regional populations in Japan. Int J Legal Med 117:34–38
- Roewer L, Krawczak M, Willuweit S et al. (2001) Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes. Forensic Sci Int 118:106–113
- 14. Gill P, Brenner C, Brinkmann B et al. (2001) DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Int J Legal Med 114:305–309
- Matsumoto H, Tsuruya S, Tsuda R, Orihara Y, Kubo S (1999) Japanese population study of a Y-linked dinucleotide repeat DNA polymorphism. J Forensic Sci 44:588–591
- 16. Schmidt U, Lutz S, Roewer L (2002) A nomenclature for YCAII which is compatible to the ISFG guidelines for Y-STR analysis. In: Brinkmann B, Carracedo A (eds) Progress in forensic genetics 9. Elsevier, Amsterdam pp 481–485

- Quintana-Murci L, Semino O, Poloni ES et al. (1999) Y-chromosome specific YCAII, DYS19 and YAP polymorphisms in human populations: a comparative study. Ann Hum Genet 63: 153–166
- Bergen AW, Wang C-Y, Tsai J et al. (1999) An asian-native american paternal lineage identified by RPS4Y resequencing and by microsatellite haplotyping. Ann Hum Genet 63:63–80
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York
- Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513
- 21. Schneider PM, Meuser S, Waiyawuth W, Seo Y, Rittner C (1998) Tandem repeat structure of the duplicated Y-chromosomal STR locus DYS 385 and frequency studies in the German and three asian populations. Forensic Sci Int 97:61–70
- 22. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York
- 23. Ploski R, Wozniak M, Pawlowski R et al. (2002) Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis. Hum Genet 110: 592–600